
Lesson 9. Machine Scheduling

Problem. The Markov Micromanufacturing Company has 9 production jobs it needs to process in the next 24 hours. The company has 4 identical machines that run in parallel. Each of these 9 jobs must be run on one of these machines **nonpreemptively**: that is, once a job is started on a machine, it must stay on that machine until it is completed. The processing times of these jobs are given below:

job	1	2	3	4	5	6	7	8	9
processing time (hours)	7	7	6	6	5	5	4	4	4

The company wants to minimize the makespan, or the completion time of the last job to finish processing.

- Let m be the number of machines in this case, m = 4
- Suppose we schedule the jobs using the **longest processing time first (LPT)** rule:
 - First, schedule the *m* longest jobs on the *m* machines
 - o Whenever a machine becomes free, put the longest unprocessed job on that machine
- Idea: LPT puts shorter jobs towards the end of the schedule, where they can be used to balance the loads on each machine
- For our problem, this yields a schedule that looks like this:

- This kind of diagram is known as a **Gantt chart**
- Therefore, the makespan for the LPT schedule is
- It turns out that the makespan of an LPT schedule is always at most 33.3% larger than the minimum makespan
- So... can we do better?
- Let's formulate this problem as a dynamic program

Stages:			
• States in stage t (nodes)):		
Decisions, transitions, a	and rewards/costs at stage	e t (edges):	
• Shortest/longest path?			
• Minimum makespan ←	→		
• Assignments of jobs to	machines ↔		